139,574 research outputs found

    Critical gravity with a scalar field in four dimensions

    Full text link
    We consider the critical gravity theory with a scalar field in four dimensions. We find that this theory has the solution corresponding to the de Sitter (dS), anti-de Sitter (AdS), and Minkowski background depending on whether the action includes the cosmological term or not. The Minkowski background is the solution which cannot be obtained in the model without a scalar field. At the critical point, we show that the Abbott-Deser (AD) mass of the Schwarzschild-de Sitter (SdS) black hole and the energy for the massless graviton vanish, whose situation is not changed from the model without a scalar field.Comment: 6 page

    Subtropical middle atmosphere dynamics observed by the Chung Li radar

    Get PDF
    The Chung Li Radar (24.91 N; 121.24 E) has been operating since 1986. A five beam observational configuration was used on a regular basis to study the various dynamics processes in the atmosphere-lower stratosphere height region. Due to its geographical location, the annual Typhoon and Mei-Yu seasons provide good opportunities to study the various interesting dynamic processes such as instabilities, generation of gravity waves, wave mean field interaction, etc. Three dimensional air motions due to these fronts are presented. Special cases of gravity wave generation, propagation and their effects on the turbulent layers are discussed

    Cold electron beams from cryo-cooled, alkali antimonide photocathodes

    Full text link
    In this letter we report on the generation of cold electron beams using a Cs3Sb photocathode grown by co-deposition of Sb and Cs. By cooling the photocathode to 90 K we demonstrate a significant reduction in the mean transverse energy validating the long standing speculation that the lattice temperature contribution limits the mean transverse energy or thermal emittance near the photoemission threshold, opening new frontiers in generating ultra-bright beams. At 90 K, we achieve a record low thermal emittance of 0.2 μ\mum (rms) per mm of laser spot diameter from an ultrafast (sub-picosecond) photocathode with quantum efficiency greater than 7×10−57\times 10^{-5} using a visible laser wavelength of 690 nm

    Single top or bottom production associated with a scalar in \gamma p collision as a probe of topcolor-assisted technicolor

    Full text link
    In the framework of the topcolor-assisted technicolor (TC2) models, we study the productions of a single top or bottom quark associated with a scalar in \gamma-p collision, which proceed via the subprocesses c\gamma -> t\pi_t^0, c\gamma -> t h_t^0 and c\gamma -> b\pi^+_t mediated by the anomalous top or bottom coupling tc\pi_t^0, tch_t^0 and bc\pi_t^+. These productions, while extremely suppressed in the Standard Model, are found to be significantly enhanced in the large part of the TC2 parameter space, especially the production via c\gamma -> b\pi^+ can have a cross section of 100 fb, which may be accessible and allow for a test of the TC2 models.Comment: 13 pages, 4 figures, comments and references adde

    First principles theoretical studies of half-metallic ferromagnetism in CrTe

    Full text link
    Using full-potential linear augmented plane wave method (FP-LAPW) and the density functional theory, we have carried out a systematic investigation of the electronic, magnetic, and cohesive properties of the chalcogenide CrTe in three competing structures: rock-salt (RS), zinc blende (ZB) and the NiAs-type (NA) hexagonal. Although the ground state is of NA structure, RS and ZB are interesting in that these fcc-based structures, which can possibly be grown on many semiconductor substrates, exhibit half-metallic phases above some critical values of the lattice parameter. We find that the NA structure is not half-metallic at its equilibrium volume, while both ZB and RS structures are. The RS structure is more stable than the ZB, with an energy that is lower by 0.25 eV/atom. While confirming previous results on the half-metallic phase in ZB structure, we provide hitherto unreported results on the half-metallic RS phase, with a gap in the minority channel and a magnetic moment of 4.0 μB\mu_{B} per formula unit. A comparison of total energies for the ferromagnetic (FM), non-magnetic (NM), and antiferromagnetic (AFM) configurations shows the lowest energy configuration to be FM for CrTe in all the three structures. The FP-LAPW calculations are supplemented by linear muffin-tin orbital (LMTO) calculations using both local density approximation (LDA) and LDA+U method. The exchange interactions and the Curie temperatures calculated via the linear response method in ZB and RS CrTe are compared over a wide range of the lattice parameter. The calculated Curie temperatures for the RS phase are consistently higher than those for the ZB phase.Comment: 11 pages, 14 figure

    Weak antilocalization and zero-field electron spin splitting in AlGaN/AlN/GaN heterostructures with a polarization induced two-dimensional electron gas

    Get PDF
    Spin-orbit coupling is studied using the quantum interference corrections to conductance in AlGaN/AlN/GaN two-dimensional electron systems where the carrier density is controlled by the persistent photoconductivity effect. All the samples studied exhibit a weak antilocalization feature with a spin-orbit field of around 1.8 mT. The zero-field electron spin splitting energies extracted from the weak antilocalization measurements are found to scale linearly with the Fermi wavevector with an effective linear spin-orbit coupling parameter 5.5x10^{-13} eV m. The spin-orbit times extracted from our measurements varied from 0.74 to 8.24 ps within the carrier density range of this experiment.Comment: 16 pages, 4 figure

    Original stopping criteria associated tomultilevel adaptive mesh refinement to dealwith local singularities

    Get PDF
    International audienceThis paper introduces a local multilevel mesh refinement strat-egy that automatically stops relating to a user-defined tolerance even incase of local singular solutions. Refinement levels are automatically gener-ated thanks to a criterion based on the direct comparison of the a posteriorierror estimate with the prescribed error. Singular solutions locally increase with the mesh step (e.g. load discontinuities, point load or geometric in-duced singularities) and are hence characterized by locally large element-wise error whatever the mesh refinement. Then, the refinement criterionmay not be self-sufficient to stop the refinement process. Additional stop-ping criteria are required to avoid an infinite refinement process while stillrespecting the desired threshold. Two original geometry-based stopping cri-teria are proposed that consist in determining the critical region for whichthe mesh refinement becomes inefficient. Numerical examples show the effi-ciency of the methodology for stress tensor approximation in L 2 -relative orL et8734; -absolute norms
    • …
    corecore